Search results for "Knot group"

showing 3 items of 3 documents

INVOLUTIONS ON KNOT GROUPS AND VARIETIES OF REPRESENTATIONS IN A LIE GROUP

2002

We prove the existence of a rationalisation [Formula: see text] of a classical or high-dimensional knot group Π which admits an involution if the Alexander polynomials of the knot are reciprocal. Using the group [Formula: see text] and its involution, we study the local structure, in the neighbourhood of an abelian representation, of the space of representation of the knot group Π in a a Lie group. We apply these results to the groups of classical prime knots up to 10 crossings.

Knot complementAlgebraPure mathematicsAlgebra and Number TheoryKnot invariantKnot groupQuantum invariantSkein relationTricolorabilityMathematics::Geometric TopologyMathematicsKnot theoryTrefoil knotJournal of Knot Theory and Its Ramifications
researchProduct

Branch Points of Algebraic Functions and the Beginnings of Modern Knot Theory

1995

Many of the key ideas which formed modern topology grew out of “normal research” in one of the mainstream fields of 19th-century mathematical thinking, the theory of complex algebraic functions. These ideas were eventually divorced from their original context. The present study discusses an example illustrating this process. During the years 1895-1905, the Austrian mathematician, Wilhelm Wirtinger, tried to generalize Felix Klein's view of algebraic functions to the case of several variables. An investigation of the monodromy behavior of such functions in the neighborhood of singular points led to the first computation of a knot group. Modern knot theory was then formed after a shift in mat…

HistoryMathematics(all)discipline formationGeneral MathematicsrationalityknotsKnot theoryAlgebraic cycleMathematical practiceAlgebraKnot (unit)MonodromyKnot groupalgebraic functionsAlgebraic functionmodernityBranch pointMathematicsHistoria Mathematica
researchProduct

Varieties of representations of virtual knot groups in SL2(C)

2002

Abstract We study the local structure of the variety of representations of a virtual knot group in SL 2 ( C ) near an abelian representation ρ 0 . To such a representation is attached a complex number ω and there are three cases. If ω and ω −1 are not roots of the Alexander polynomial, there are only abelian representations around ρ 0 . If ω is a root and ω −1 is not, there are only reducible representations. If both ω and ω −1 are roots and certain homological conditions hold, there are irreducible representations.

Pure mathematicsInduced representationQuantum invariantAlexander polynomialKnot polynomialVirtual knotKnot theoryAlgebraKnot invariantRepresentation theory of SUVirtual knot groupsRepresentation spacesGeometry and TopologyMathematicsTopology and its Applications
researchProduct